Establishing New Tree Fruit Orchards with Container-Produced Nursery Trees

Todd Einhorn, Ph.D.
Associate Professor and Tree Fruit Specialist
Michigan State University einhornt@msu.edu

Objectives

- New plantings need to fill orchard space rapidly and then be shifted to cropping

Lakso, 1994

Situation

- Planting density is steadily increasing (900 to 1,500 trees/acre)
- High density plantings are very expensive (\$15,000\$25,000/acre)
- They require intensive horticultural management to balance cropping and canopy development for fruit size and quality

Situation

- With cultivars such as Honeycrisp, inherent dwarfing and precocity markedly limit canopy development
- Returns of \$500\$800/bin don't aid the
 decision to drop fruit in the $2^{\text {nd }}$ or $3^{\text {rd }}$ leaf in lieu of canopy growth

Situation

- The objective is to pay off the investment as soon as possible

Issues with Planting Material

- Traditional bare-root nursery stock is inherently prone to transplant shock

Established spring, 2016
October, 2016

Containers: Alternative option?

- By contrast, containers offer minimal disruption of the rhizosphere at planting
- Balance between above and below-ground growth is maintained
- Carbohydrate and nutrient reserves are available for establishment

Container Diversity

- Containers differ widely in construction and principle
- Plastic containers
- Injection-molded materials

Rootmaker products rootmaker.com

- Paper liner/membranes

Container Root Systems

- Potential issues with container production
- Circling roots
- J-roots
- Future Girdling
- Poor spreading after established in field

Air Pruning Systems

- Air pruning pot systems
- Encourage root branching by removing inhibitory signal for lateral root initiation
- Increase root length density of fibrous (feeder) roots
- Eliminates root circling and future girdling

Air Pruning

Courtesy Lars Jensen

$\left.\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITY }} \right\rvert\,$ Extension

Management Considerations

- Containers offer planting Flexibility
- Spring planting vs. Fall planting
- Opportunities to take advantage of H2A `down time' between harvests
- Planting when soil and climatic conditions are favorable
- Paper liners (Ellepot systems) increase flexibility in the timing of planting since containers can be planted before roots have filled pot volume

Cost Considerations

- Containerized trees have additional production costs
- Media, molded trays, etc.
- Freight/Shipping costs depend on origin, tree size and state (i.e., green or dormant) and may all affect price
- Do the benefits outweigh the costs?

2017 MSU Ellepot Production Trial

- Starting material: Nic29 Bench grafts (Honeycrisp, Gala, Fuji)

Ellepot System

2017 MSU Ellepot Production Trial

- Experiment: Comparison of Bare root or Ellepot production systems for apple trees (Honeycrisp, Gala, Fuji)

2017 MSU Ellepot Trial

MICHIGAN STATE UNIVERSITY
 Extension

- Scion Growth

2017 MSU Ellepot Trial

- Individual Leaf Size (cm²)

- Ellepot-produced trees also had significantly higher total canopy LA

2017 MSU Ellepot Trial

MICHIGAN STATE
 UNIVERSITY

2017 End-of-season MSU Root Growth

- Ellepot-produced Gala and Honeycrisp had 70% to 100% more root tips than field-produced liners

2017 End-of-season MSU Root Growth

- Ellepots had 50% to 100% more fine-root production than liners
- Non-fine roots significantly greater for field-produced trees
- Fine roots account for ${ }^{\sim} 95 \%$ or more of total root length

MICHIGAN STATE
 UNIVERSITY

2017 End-of-season MSU Root Growth

- Field-produced trees had significantly greater dry weight (CHO) than Ellepot trees- Non-structural CHO currently being analyzed

Ellepot Trials- MSU, HTRC

Front to back: Rep 1, Gala, Fuji, HC; Rep 2, HC, Fuji, Gala

$\left.\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITY }} \right\rvert\,$ Extension

2018 Orchard Plantings

- We established 3 orchard sites with Ellepot and bareroot trees produced in 2017
- Clarksville, Traverse City and Sparta
- At Clarksville, monthly above-ground measurements were taken (shoot growth, shoot number and leader height)
- In November, ~ 100 whole trees (including root systems) were excavated to evaluate root growth and development one year after transplanting

2018 End developm

Table 1. Effect of Ellepot vs. B

	rootstock on first	
Cultivar	Nursery (location)	Prodı sys
Fuji	MSU	Ellı
Fuji	MSU	Bar€
Gala	MSU	Ellı
Gala	MSU	Bart
Honeycrisp	MSU	Ell
Honeycrisp	MSU	Bare

- Ellepot-produq growth than b

Challenges of Container Production

- Given the small rooting volume, containers are unforgiving of horticultural errors
- Water use/irrigation
- Media offers relatively no buffering capacity
- Water quality
- Nutrition
- Light/Temperature (i.e.,
 receiving green plants)

Planting Containerized Trees

Courtesy Cliff Beumel, (Same Planting October, 2017 Yakima, WA)

"Quick Start" Fuji on Bud 10

 Side By Side with 2 Year Nursery Tree on M9 Planting Date June 1

Courtesy Cliff Beumel, Sierra Gold Nurseries

Summary

- Container produced trees offer planting flexibility and reduce transplant shock by maintaining tree balance and necessary reserves
- Container systems with air pruning stimulate production of fine roots practically eliminating poor root development
- These benefits led to improved canopy growth and development in the first establishment year
- Early and higher production would be expected to easily compensate for the increased costs associated with products

$\left.\frac{\text { MICHIGAN STATE }}{\text { UNIVERSITY }} \right\rvert\,$ Extension

Thank you!

I would like to acknowledge ...

- MAC, MTFC
- Cliff Beumel, Sierra Gold Nurseries
- Lars Jensen, Ellepot, USA
- Skip Blackmore, Blackmore Co.
- Bert Cregg \& Tom Fernandez, MSU
- Farm staff: MSU Hort Farm and CRC
- Lab and field team: Phil Schwallier, Amy IrishBrown, Mokhles (Cc) Elsysy, Tye Wittenbach, Mohamed Ghorab, Gail Byler, Denise Ruwersma

